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SUMMARY 

During the last decade investments in offshore wind have increased while the cost per MW 

capacity has decreased significantly. Historically, offshore wind has relied on subsidies, but 

with the rapidly decreasing costs such schemes are no longer necessary. However, poten-

tial for cost reduction remains and should continuously be pursued to drive the transition 

to a fully sustainable energy system. 

The installation process of offshore wind requires the use of expensive jack-up vessels. 

These vessels regularly report their position via the Automatic Identification System (AIS), 

which is a radio transponder technology developed for real-time vessel tracking to avoid 

collisions at sea. The AIS data offers accurate position data at a high time resolution and 

years of data is globally available at low cost. 

This paper introduces a novel approach of applying machine learning to AIS data from jack-

up vessels. We derive detailed time breakdowns of individual turbine installations, the vari-

ation within parks and vessel performance profiling. The algorithm is highly automated and 

requires no prior knowledge of individual turbine locations. Installation times and turbine 

locations can be inferred directly by applying a clustering algorithm to publicly available AIS 

data. These results can reduce the cost uncertainty when planning future offshore pro-

jects, which, in turn, improves the profitability of these projects. 
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INTRODUCTION 

The installed capacity of offshore wind has increased by more than a factor of 10 during 
the last decade [1], and is expected to keep growing in the future [2]. Simultaneously, the 
global weighted average Levelized Cost of Energy (LCOE) for offshore wind decreased by 
20% from 2010 to 2018 [3]. Until recently offshore wind has relied on government subsi-
dies, but with the recent non-subsidized bids driven by cost reductions such schemes are 
becoming less important [4, 5]. However, potential for cost reduction remains and should 
be continuously pursued to drive the transition to a fully sustainable energy system. 

The installation process of offshore wind turbines requires the use of jackup vessels with 
day-rates exceeding 100.000 € [6]. These vessels regularly report their position via the Au-
tomatic Identification System (AIS), a radio transponder technology developed for real-
time vessel tracking to avoid collisions at sea [7]. The AIS data offers accurate position data 
at a high temporal resolution and years of data is globally available either publicly or at low 
cost [8, 9]. 

This paper introduces a novel approach to determining offshore installation times by ap-
plying machine learning to AIS data from jackup vessels. We derive detailed time break-
downs of individual turbine installations, the variation within parks as well as the time 
spent in transit and docked in harbor. The new method requires no prior knowledge of in-
dividual turbine locations. Installation times and turbine locations can be inferred directly 
by applying a clustering algorithm to publicly available AIS data. These results can reduce 
the uncertainty of costs when planning future offshore projects and thereby reduce overall 
project costs [10, 11]. 

Analyzing and understanding AIS data has for some years been a part of a larger tracking 
project carried out internally in Siemens Gamesa. Until now the results generated from AIS 
data has relied on traditional scripting, which required fundamental knowledge of the indi-
vidual offshore sites. All in all, the traditional scripting approach yields the same level of ac-
curacy on results, but requires significantly more overhead in setting up and maintenance. 
The fact that the machine learning model is simpler to set up and maintain than traditional 
scripting was an eye opening experience contradicting the intuition of many project partici-
pants and therefore and experience worth sharing. 

METHODS 

2.1. DATA 
We exclusively use AIS data, which reports unique identification, position, course and 

speed for marine vessels. This data can either be collected directly from vessel transponder 

broadcasts or obtained from aggregators such as maritime authorities or data brokers. For 

Danish waters, historical AIS data is currently made publicly available for free by the Danish 

Maritime Authority [8]. For wind farms outside Danish waters, we obtain AIS data from 

MarineTraffic [9]. In this study, we only consider GPS position data (latitude, longitude). As 

an example, the left part of Figure 1 shows latitude and longitude extracted from AIS data 
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for the Brave Tern jackup vessel during installation of Horns Rev 3 from July 2018 to Janu-

ary 2019. The right part of the figure shows the same data when zoomed in on the farm. 

The sampling frequency of the AIS data, publicly available from [8], is approximately 0.1 Hz 

allowing for a very detailed tracking of the vessel. 

Figure 1 Position data for the Brave Tern jackup vessel during installation of Horns Rev 3 

from July 2018 to January 2019 (left). Zoomed in version corresponding to the black 

frame in the left part (right). 

 

2.2. CLUSTERING 
The current state-of-the-art method for determining offshore wind installation times en-

tails dividing the time interval from start to finish of the entire farm by the number of tur-

bines [12]. This method provides an average installation time, which includes the time 

spent in transit between the wind farm and harbor as well as the time spent in the harbor. 

The use of AIS data to determine installation times of offshore wind turbines was proposed 

in [12]. 

The new method presented here uses a machine learning method to cluster the GPS coor-

dinates extracted from AIS data of jackup vessels. We are able to automatically identify in-

stallation times for individual turbines, which provides both an overall average, but also 

the distribution of installation times. In addition, we can identify the time spent in transit 

and the time spent in harbor, thus enabling a much more detailed description of the entire 

installation process. 

We seek to determine installation times exclusively from AIS data since this is often the 

only data that is readily available to the public. Coordinates of individual turbines are gen-

erally not available. This can be remedied by applying a clustering algorithm to the GPS lo-

cation data provided in the AIS broadcasts from every jackup vessel. Clustering of this data 

allows us to determine individual turbine coordinates and subsequently individual installa-

tion times. 
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Determining turbine locations is done using the K-means clustering algorithm as imple-

mented in scikit-learn [13]. Briefly, it divides a set of observations into k clusters by mini-

mizing 

min
𝑺

∑∑‖𝒙− µ𝑖‖
2,

𝒙∈𝑆𝑖

𝑘

𝑖=1

 

where Si is the subset of the data assigned to cluster i and µi the mean of this subset. Gen-

erally, the vector x can be n-dimensional. In this case it has just two dimensions: longitude 

and latitude. When applying the clustering algorithm to each of the wind farms in Table 1, 

the number of clusters k is set to the number of actual turbines within the farm plus a few 

extra to account for the paths to and from the farm. The purpose of the extra clusters is to 

capture unnecessary data points so they do not impact the desired clusters. The extra clus-

ters have been tweaked manually for each farm based on visual inspection and are auto-

matically discarded during the subsequent process of determining installation times for 

each turbine. For a detailed description of clustering methods and the K-means algorithm, 

see [14]. 

The AIS data includes a signal called Navigational Status. This signal reports whether the 

vessel is moving, anchored etc. This signal could potentially be used to determine the loca-

tion of turbines. However, the crew manually reports this signal, and therefore it is prone 

to error. 

2.3. IDENTIFYING INSTALLATION TIMES 
Having identified turbine locations by clustering the AIS data we determine the installation 

time of each turbine based on the AIS data assigned to each cluster. We discard all posi-

tions that are further than 100 meters from the cluster center. The installation time is then 

determined as the time starting from the vessel entering this 100-meter radius of the tur-

bine until it leaves. We observe a few cases of what appears to be more than one installa-

tion per turbine. These individual time segments are summed to one cumulative installa-

tion time per turbine location. 

To account for low time resolution and missing data, we determine the uncertainty of the 

identified installation time by calculating the time interval from the first data point just be-

fore the vessel enters the 100-meter radius until the first data point just after the vessel 

has left the 100-meter radius. This 100-meter radius has been chosen with the criteria to 

be as small as possible while taking the typical size of a jackup vessel into account. 

RESULTS 

We apply the new method based on machine learning to 13 offshore wind farms in Danish, 

German and British waters as listed in Table 1. In the following subsections we first identify 

(1) 
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individual turbine locations. From these we determine individual installation times and 

compare these between the wind farms considered. 

3.1. CLUSTERING 
The results of applying the K-means clustering algorithm defined in Equation 1 to two wind 

farm installations in Danish waters are shown in Figure 2. The results for Brave Tern in-

stalling Horns Rev 3 and Sea Challenger installing Arkona are shown in the left and right 

panel, respectively. The figure shows the identified turbine locations from clustering AIS 

data in blue and additional clusters capturing the vessel’s path to and from the wind farm 

in orange, which the algorithm has automatically marked for exclusion. The exclusion is 

based on the amount of data points within a cluster. The extra clusters contain much fewer 

data points for when the vessel is moving to and from the farm compared to being station-

ary during an installation. 

Figure 2 Clustering of AIS data for Brave Tern installing Horns Rev 3 (left) and Sea Chal-

lenger installing Arkona (right). 

 

3.2. INSTALLATION SEGMENTS 
The installation times resulting from the clusters shown in Figure 2 are shown in Figure 3. 

The left panel represents Horns Rev 3 and the right panel Arkona, where the identified in-

stallations are sorted by duration. 

The errorbars indicate the uncertainty in identifying the duration of each installation. This 

uncertainty depends on the temporal resolution and completeness of available AIS data. 

The two installations with a high uncertainty in Horns Rev 3 are caused by gaps in the AIS 

time series. For the remaining examples shown here the uncertainties are almost non-ex-

istent. This is due to the fact that the AIS data collected from [8] generally has a high sam-

pling frequency. 
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Table 1 shows statistics on the identified installation times for each farm. We report the 

average, standard deviation, minimum, median and maximum times in hours. The cover-

age percentage is calculated as the number of identified turbine installations as a fraction 

of the actual number of turbines. These results are much more detailed than the current 

state-of-the-art of only reporting averages [12]. For all farms the median installation time 

is lower than the average, which is caused by a few outliers with a very long installation 

time. For most farms we are able to identify all turbines. The cases of missing turbines are 

due to missing data. The very high maximum installation time of 588 hours for Brave Tern 

at Hohe See is caused by 3 segments at the same location. They are each 295, 199 and 94 

hours. 

Figure 3 Installation times sorted by duration for Horns Rev 3 (left) and Arkona (right). 

 

Table 1 Statistics on the identified installation segments for each farm. We report the 
average, standard deviation, minimum, median and maximum times in hours. The cov-
erage percentage is calculated as the number of identified turbine locations as a frac-
tion of the actual number of turbines. 

Project Avg. s.d. min median max turbines Coverage % 

Horns Rev 3 57.6 38.1 22.8 46.4 199.5 49 100 

Arkona 31.5 18.4 18.2 24.5 122.6 60 100 

Butendiek 53.7 53.8 16.7 25.3 303.4 80 96 

Dudgeon 57 33.4 25.9 43.2 175.4 67 99 

Gode Wind 39.5 44.4 15.4 22.2 242.0 97 94 

Beatrice 66.1 62.7 20.1 38.3 452.9 84 94 

Burbo Bank Extension 50.4 33.2 23.9 36.8 176.5 32 100 

Galloper (BT) 93.2 74.6 29.6 83.4 319.9 17 100 

Galloper (PO) 84.8 43.3 29.0 76.8 214.6 39 100 

Race Bank 37.2 16.7 19.3 31.6 87.2 91 89 

Rentel 39 15.5 21.1 34.2 83.5 42 100 
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Figure 4 shows a comparison of the distribution of installation times across all wind farms. 

We see that most installation times are well below 100 hours and even below 50 hours, 

while there is a very small number of extreme cases with installation times of several hun-

dred hours as shown also in Table 1. The figure shows a cumulative histogram of turbine 

installations per wind farm. As an example, it shows that for Gode Wind about 40% of the 

installations each took less than 20 hours and about 80% of the installations each took less 

than 40 hours. The steeper the curve, the lower the variation in installation times. The two 

leftmost curves for Gode Wind and Arkona are good examples of short installation times. 

On the other hand, the two curves to the right for Bold Tern and Pacific Orca installing Gal-

loper show a large variations in installation times. Note that the x-axis is logarithmic and 

that all installations have been identified automatically, so they have not been manually 

validated individually. 

Figure 4 Cumulative histogram of individual installation times compared between se-

lected wind farms. 

 

Similar to Figure 4, it is possible to compare the distribution of installation times between 

jackup vessels. However, individual installation times will vary based on factors such as the 

size and weight of the installed components, weather conditions, seabed, and the fact that 

the different jackup vessels have different lifting capacities. Additionally, the total installa-

tion time of the farm depends on the number of turbines the jackup vessel can carry per 

trip. Due to these factors such benchmarking should be done with caution. 

Westermost Rough 52.4 30.7 22.9 41.1 126.6 35 83 

Walney Extension (Siemens) 46 42.5 19.2 26.2 228.6 47 100 

Walney Extension (Vestas) 47.2 33.3 20.0 35.7 144.1 40 100 

Hohe See (Brave Tern) 54.3 90.7 20.8 32.7 588.1 39 100 

Hohe See (Blue Tern) 53.5 34.4 23.7 36.7 144.2 32 100 
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Following the approach in [12], the average installation time per turbine for Horns Rev 3 is 

calculated by dividing the total time of installation (July 1st 2018 to January 21st 2019) by 

the number of turbines, which results in 100.6 hours per turbine. This is an increase of 

87.9% compared with the average time reported in Table 1, because the approach in [12] 

does not take into account the time spent in transit and harbor. However, it is important to 

estimate both how much time is spent installing turbines and how much time is spent 

docked. This is due to the possibility of the rate of a jackup vessel being variable depending 

on the amount of crew required, which is reduced when docked for longer periods. Distin-

guishing between these different classes of time segments enables detailed modeling of 

offshore wind installation costs [15]. 

CONCLUSION 

Based on the identified time intervals for installation, we determined the performance of 

the installation process for each wind farm. These results allow planners of future wind 

farm projects to base their cost estimates of installation times on generalizations of the re-

sults presented here. Increasing accuracy of cost estimates leads to reduced financial risk 

and thereby lowering the overall project costs. This analysis also enables identifying partic-

ularly efficient installations times in order to learn from them. Additionally, these results 

allow us to compare installation times between projects and benchmark the performance 

of different jackup vessels. However, such comparisons should be done with caution since 

the different wind farms use turbines of varying sizes and weight, which influence the ex-

pected installation times. Further, the different jackup vessels have varying lifting capaci-

ties limiting the availability of vessels for turbines of increasing size. Bad weather condi-

tions also have an effect: high wind speeds or wave heights might cause delays in jacking 

up and lifting. Additionally, the quality of the seabed, in combination with the weight of 

the turbine components, significantly impacts the jackup and jack-down times. 

Due to the number of factors affecting installation times it might not be straightforward to 

generalize the results on installation times in this study to future wind farms. However, the 

method presented here allows turbine manufacturers to continuously monitor their instal-

lation processes. This enables a continuous feedback loop where previous estimates of in-

stallation times can be evaluated. Such comparisons can in turn be used to improve the es-

timates for future offshore wind projects in an iterative way. This will lead to higher accu-

racy in predictions and, thus, lower project costs due to increasingly reduced risk. 
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